Archive for 2018

Sixty Minutes Australia Story on MH370 is a Sensation

On Sunday night, Sixty Minutes Australia aired an episode on the disappearance of MH370. Included was a panel of five experts, consisting of Canadian crash investigator Larry Vance, US air safety expert John Cox, British airline captain Simon Hardy, former ATSB commissioner Martin Dolan, and Australian oceanographer Charitha Pattiaratchi. Before airing, the episode was heavily promoted with teasers claiming there would be “groundbreaking revelations”, the “passengers’ final seconds”, and a “forensic twist”.

Unfortunately, after watching the episode twice, I found nothing in the way of new evidence or insights. What I did see were some of the experts confusing speculation with facts, and cherry-picking evidence to support their pet theories while carefully omitting contradicting evidence.

Despite the obvious shortcomings of the episode, the mainstream media is covering it extensively with headlines like “Experts Have Finally Solved the Mystery Behind the MH370 Disappearance”. The sensational nature of the story makes it attention-grabbing, and hiding behind the Sixty Minutes brand name, there is little or no attempt to fact-check.

A large part of the episode was devoted to Larry Vance’s theory that the captain hijacked the plane and flew it to the SIO to hide it. That plan included a successful ditching with the engines running and the flaps extended, leading to the sinking of the aircraft with the fuselage intact. (This “new” theory was already presented by Mr Vance in a Sixty Minutes story that aired in July 2016.) This ditching would produce only a small amount of floating debris. Mr Vance also refers to the damage to the trailing edges of the right flaperon and right outboard flap and the lack of damage to the leading edges of those parts. He believes this pattern of damage conclusively shows that there were hydrodynamic forces as those parts were dragged across the water surface during the ditching.

What was omitted is that we do have pieces of evidence that refute some of Mr Vance’s claims, and should at least cast a shadow of doubt on many of his conclusions. Briefly,

  • Crash investigators at the ATSB have examined the right flaperon and the right outboard flap that were recovered and determined that some damage on both parts was caused by mutual contact, and the location of that contact could only occur with the flaps retracted.
  • Recovered parts from the passenger cabin show deformation from a high energy impact and not a successful ditching.
  • The final log-on of the SATCOM at 00:19 suggests there was a disruption of electrical power to the SATCOM, which is consistent with fuel exhaustion of both engines, and not a ditching with the engines running. It’s not clear in his scenario what caused the log-on.
  • The damage to the trailing edges of the flaperon and flap could have been caused by aerodynamic forces occurring during a high speed descent. The lack of damage to the leading edges can be explained by separation of these parts from the aircraft prior to impact with the ocean.

Strangely, in the episode, Martin Dolan does not challenge Mr Vance’s scenario with the contradictory evidence published by the ATSB. Perhaps those challenges were made, and they were not included in the episode. Or, perhaps Mr Dolan is not sufficiently familiar with the technical analyses of the ATSB where he could confidently refute some of Mr Vance’s claims.

The theories of Simon Hardy also were featured in the episode. Mr Hardy, like Mr Vance, believes that the captain hijacked the plane, but he believes the plane glided a long distance after fuel exhaustion rather than a ditching with the engines running. The possibility of a glide suggests a crash location at a distance from the 7th arc that is well beyond what was searched. His claim that military data shows that MH370 was flown along the borders of Malaysia and Thailand is presented as shocking new evidence, when in fact the turnback flight path across the Malay peninsula has been known to the public within weeks of the disappearance, and the implications have been widely discussed. (The precise flight path flown as captured by civilian radar has only been recently published, and was the subject of the preceding blog post.) Mr Hardy also demonstrated on a flight simulator that it is possible for a skilled pilot to recover from a high speed descent that matches the satellite data, which was not in dispute, although he does downplay the importance of gently working the controls and applying speedbrakes to help arrest the descent and prevent overloading of the lift and control surfaces. (Why a pilot would first enter into a steep descent, then recover and maximize the gliding distance, was not explained.) At another point, he claims to know exactly where MH370 crashed, although he neglects to state that all drift models suggest a crash point much further north.

In the episode, Mr Hardy once again promotes his theory that MH370’s flight path as it flew south of Penang Island shows indication that the captain turned to the right, lowering the right wing, and allowing the captain to have a final, sentimental view of Penang before leaving Malaysia forever. In fact, using the recent radar data, we can deduce that at the point of closest approach to Penang, MH370’s wings were either level or only slightly banked. After passing Penang, there was a turn to the right followed by a turn to the left, but to conclude that this was an emotional farewell is pure speculation, and weakens his theories.

Although I disagree with some of Mr Vance’s and Mr Hardy’s conclusions, I am in general agreement that the disappearance was likely an intentional diversion and not likely the result of a series of mechanical failures. After reviewing many accident scenarios proposed by some very bright minds, I have yet to see an accident scenario that did not require a sequence of very unlikely events. On the other hand, a deliberate diversion requires no unlikely events, even if we might not understand the motivation for many of the intentional actions.

If the diversion was intentional, the captain becomes the likely suspect, as he had the skill and the best opportunity to divert the aircraft. In addition, as discussed and analyzed in a previous blog post, the incriminating evidence found on his home computer of a simulated flight to the Southern Indian Ocean would be an extraordinary coincidence if the captain was not somehow involved in the disappearance.  There is certainly not enough evidence for a legal determination of guilt. However, I believe there is sufficient evidence to make him the prime suspect.

Perhaps the Sixty Minutes episode did have value in that it did not shy away from presenting what many believe is the most likely scenario, even if some of the conclusions from the experts were either unfounded or premature.

The episode comes at a time when Ocean Infinity is in the final weeks of the seabed search for MH370. If not found, and if there is a willingness to conduct additional searches next year, a decision has to be made whether to prioritize areas along the 7th arc that are further north, or to revisit previous latitudes but search further away from the arc, or to revisit areas that might have been insufficiently scanned previously.  A strong case for the possibility of a glide after fuel exhaustion would support searching wider (+/- 100 NM) from the 7th arc.  Unfortunately, the size of the search becomes unreasonably large unless there is rationale to support a narrow range of latitudes along the 7th arc.

On a final note, I have been asked whether the defeat of the incumbent party in the recent Malaysian elections could lead to a more thorough investigation of the events surrounding MH370. Although it is possible, the winning candidate and former Prime Minister, Mahathir Mohamad, has previously supported the unlikely theory that MH370 was diverted remotely using secret Boeing technology embedded in the flight controls. While this might indicate his willingness to challenge the official narrative, it also might demonstrate his willingness to use the MH370 for political gain rather than seek the truth. Meanwhile, his heir-apparent, former Deputy Prime Minister Anwar Ibrahim, had family and political ties to MH370’s captain, and those ties might taint future investigations. On a positive note, it is possible that any whistleblowers that were previously reluctant to come forward might now feel less threatened.

Posted in Aviation | 820 Comments »

The Civilian Radar Data for MH370

Civilian radar data after transponder was disabled. (Click to enlarge.)

We know that MH370 was captured by civilian and military radar sites before and after the transponder was disabled at 17:21 UTC. However, Malaysian authorities have chosen to release these data sets only as low resolution images that have imprecise position information with few timestamps. The DSTG did choose to publish in its Bayesian analysis the speed and track data that was derived from radar data that was provided to them by Malaysia. However, the DSTG presented the speed and track data after applying a Kalman filter to remove noise. It’s unknown whether that Kalman filter produced artefacts in the graphical presentation of that data.

We now have what we believe are the data sets for the primary surveillance radar (PSR) and secondary surveillance radar (SSR) from Malaysian civilian radar assets. The PSR data is of particular significance because it provides additional insight about how MH370 was flown after the transponder was disabled at 17:21 UTC. The data was publicly released by fellow IG member Mike Exner. The military radar data remains unavailable.

The data begins at 17:30:33 when the civilian radar installation at Kota Bharu Airport (WMKC) detected MH370 traveling back towards the Malay peninsula about 58 NM from shore. The last radar target was captured by the civilian radar installation at Butterworth Airfield (WMKB) after MH370 had passed to the south of Penang Island and was tracking northwest up the Malacca Strait towards Pulau Perak.

Some initial observations about the data:

  1. The PSR data is similar to the civilian radar data that was graphically presented in the Factual Information (FI) from March 2015. However, while the last civilian radar capture in the FI was at 17:51:47, the new data set has captures until 18:00:51.
  2. The path derived from the Kota Bharu radar data is not straight. More analysis is required to determine if this waviness indicates that there were pilot inputs from manual flying, pilot inputs to the selected heading with autopilot engaged, or inaccuracies of the radar data.
  3. The path was tangent to a 5 NM radius for both Kota Bharu and Penang Airports. This may indicate that these airports might have been displayed as fixes in the navigational display (ND) with a radius of 5 NM and used as navigational references.
  4. After passing to the south of Penang Island, the plane first tracked towards 301ºT, and then changed to 291ºT, which aligned with Pulau Perak and roughly towards VAMPI.
  5. The groundspeed data as derived from the radar data is noisy, reflecting uncertainty in the value of the timestamp as well as the range and azimuth for each capture. In light of the uncertainty, the average speed was calculated for five of the six segments of radar captures, and shown by the red line in the figure below. (The time interval of the shortest segment was only 24 s, and deemed to short to calculate the speed with a useful level of precision.) The average speed for the second and third segments are 527 knots and 532 knots, respectively, which suggests the plane was flying close to Mmo=0.87. For instance, with a tailwind of 12 knots and a temperature offset of ISA+10.3K, a groundspeed of 527 knots converts to M0.87. At the Mmo/Vmo crossover altitude of 30,500 ft, a groundspeed of 532 knots converts to M0.86. This suggests that after the aircraft flew past Kota Bharu, it was at the upper end of its operating speed range, and possibly at times beyond it.

Calculated groundspeed as derived from the civilian radar data. (Click to enlarge.)

I know that independent investigators that contribute here and elsewhere will continue to analyze the data to better understand how MH370 was flown before it completely disappeared from all radar sites.

Update on April 12, 2018: The plot of groundspeed was updated by removing the trend lines and replacing them with average speeds over segments. In light of the noise on the speed calculations, this is more appropriate. The estimated peak groundspeed reduced from 545 knots to 532 knots. The corresponding text in (5) was also updated to reflect this change.

Update 2 on April 12, 2018: Here is an Excel file for those wishing to see the basis for my calculations. Please let me know if corrections are required.

Posted in Aviation | 1,114 Comments »

MH370 Search Update – Mar 18, 2018

Ocean Infinity’s search progress, from Richard Cole.

Recent Activity

Seabed Constructor, the vessel operated by Ocean Infinity to scan the seabed in search of MH370, is returning to port in Fremantle, Western Australia, to refuel, change crews, and resupply. Constructor is completing the second of three or four swings, each swing lasting about six weeks. So far, there have been no promising sonar “contacts” that might represent the debris field of the missing aircraft.

There remains about 3,000 sq km of seabed to search in the area that the ATSB and CSIRO designated as a priority. After that, the extended search area along the 7th arc would require scanning about 46,600 sq km to reach north to around 29S latitude if the width of the search was 25 NM on either side of the 7th arc. That will require more than one additional swing to complete. In fact, it could prove challenging to complete with even two additional swings, depending on the weather and how well the eight autonomous underwater vehicles (AUVs) perform. Although not publicly stated, there are indications are that at least one of the AUVs is having technical problems.

What We Know So Far

Any scenario that leads to a particular location (a “warm spot”) is based on a set of assumptions, and the failure to find the debris field in proximity to this location means that one or more of those assumptions are false. So we can be fairly certain that the large, blurry objects seen in the French satellite images were not from MH370, as the corresponding impact locations calculated by CSIRO were searched without success. Also searched was the warm spot that was calculated by assuming that the aircraft flew until fuel exhaustion on a path towards the South Pole. Unless an interesting contact was found but not yet disclosed, this scenario also can be dismissed.

In the coming weeks, other scenarios will be searched, including the impact site near 30S latitude that is based on two floating debris fields that were spotted during the aerial surveillance, and discussed at length in a previous post.

Reasons Why the Debris Field Has Not Yet Been Found

Although the area already scanned by Seabed Constructor was designated the highest probability by the ATSB and CSIRO, there are reasons why endpoints outside of this area are still possible.

  • A descent at 18:40 followed by a holding pattern, excursion, or other “loiter” before the turn to the south could mean the plane impacted along the 7th arc to the north of the priority area that has been searched. The last radar target was captured at 18:22, and after 18:28, the next ping arc derived from the BTO data is known at 19:41. There is simply no way to be sure of the path of the plane during this interval.
  • A shift in oscillator frequency of the satellite data unit (SDU) of the SATCOM, which would change the value of the fixed frequency bias (FFB) that is used to convert the location and speed data into a BFO that can be compared with the measured BFO values. In a nutshell, if the FFB shifted by +7 Hz after the power up at 18:25, endpoints as far north as 27S are allowed by the BTO and BFO data. It turns out there is an effect called “retrace” that causes oscillators that are powered down, cooled, and powered up to shift in frequency, and there are indications that a retrace shift of about -4 Hz occurred while 9M-MRO was on the ground at KLIA before the MH370 flight. A similar shift, but in the opposite direction (up) might have occurred due to the inflight power cycling.
  • Pilot inputs after 19:41 might have altered the path. The continuous, smooth progression of the BTO and BFO data suggests automated flight with few or no pilot inputs until fuel exhaustion. However, there is a remote possibility that the smooth progression of values was produced by a more complicated path that by chance replicated the simplest of paths.
  • There is also the possibility that the previous search was as the correct latitude along the 7th arc, but the width of +/- 25 NM from the 7th arc was not sufficient. The final two BFO values indicate a steep, increasing descent that if continued would mean the plane impacted close to the 7th arc. The debris is also consistent with a high-energy impact. However, it is possible, albeit unlikely, that a skilled pilot carefully recovered from the high-speed descent, regained altitude, and glided for some distance beyond 25 NM.
  • Although some of the area north of the priority search area was searched by aerial surveillance in the weeks following the disappearance, the search area was large and the coverage was spread thin. Also, some debris was seen from air, but never recovered due to the distance of ships supporting the search effort.

Simulation of Seabed Constructor’s Search Pattern

Finally, Richard Cole, who has carefully been tracking and analyzing the search patterns of Seabed Constructor, has produced a short video which shows the path of the vessel and how it relates to the launch and recovery of the AUVs. Richard is quite talented at extracting a lot of information from small amounts of data, and this video, like all his work, is commendable.

Posted in Aviation | 1,124 Comments »

MH370 Search Update – Feb 16, 2018

Status of current underwater search. (Click on image to enlarge.)

Recent Activity

After a short stop in Fremantle for to re-fuel, re-supply, and change crew, Seabed Constructor, operated by Ocean Infinity, is back searching for the wreckage of MH370. Ocean Infinity is under contract with Malaysia to use its team of eight autonomous underwater vehicles (AUVs) to scan the seabed in the Southern Indian Ocean (SIO) in search of wreckage from the aircraft. Under the terms of the contract, Ocean Infinity will only be paid if the wreckage is found. The search is occurring in multiple six-week long “swings”, of which the first swing has been completed, and the second swing is just beginning. Subsequent swings will also require a stop in Fremantle for servicing.

For the first swing, Ocean Infinity began by searching the 25,000 sq km of seabed that ATSB and CSIRO have designated as the priority area (shown in white in the figure). So far, Constructor has scanned about 7,500 sq km of seabed, including 5,000 sq km within the priority area that was designated by CSIRO as the “primary area” (solid white). There remains about 20,000 sq km of the priority area that is unscanned (translucent white). Beyond that is the extended search area, which reaches to about 29S latitude along the 7th arc (translucent green), and is expected to be searched at a width of +/- 25 NM from the 7th arc. Under ideal conditions, the eight AUVs are capable of scanning about 1,200 sq km of seabed each day. Recognizing the possibility of weather and operational constraints,  a more realistic expectation might be about 25,000 sq km per swing. However, until Ocean Infinity gains more operational experience, it is difficult to predict what scan rates are realistically achievable.

With the sparse and imprecise evidence we have, it is impossible to assign a high level of certainty to any impact site, as the satellite data and the drift models allow a broad range of possibilities. So, it becomes a numbers game–the more area searched, the higher probability of finding the wreckage. However, within that broad range, there are some “warm spots” that are based on assumptions about navigation inputs and other evidence.

What We Know So Far

In the previous post, I estimated the probability of finding the wreckage as 67%, assuming all of the priority and extended areas are scanned. (This probability will vary some depending on how far north the search reaches.) Considering that only 5,000 sq km of that area were scanned in the first swing, and assuming that there are equal probabilities within that total area, the probability of finding the debris field within the primary area would be about 4.4%. Considering this low percentage, it should come as no surprise that the wreckage has not yet been found, and we are far from the point of re-thinking the search strategy.

Within the area searched so far, there are three warm spots that CSIRO has designated as priorities, based on satellite images of objects that could have been MH370 debris, and from drift models that estimated the points of impact from the location of these objects. Last August, the highest priority location (CSIRO Priority 1) was described by CSIRO’s David Griffin in these words: We think it is possible to identify a most likely location of the aircraft, with unprecedented precision and certainty. Unfortunately, all three of these locations have now been scanned with negative results. Unless positive news is being withheld, the confidence expressed by CSIRO was unfounded. This is not a total surprise: The objects captured by the satellite images had too much surface area to likely be from MH370, and the location of the potential impact sites were  not consistent with the high speed descent suggested by the final BFO values.

Two other warm spots have been at least partially searched in the first swing. The first is an impact location near 34.7S latitude that Inmarsat derived by minimizing the BFO error. More recently, Bobby Ulich proposed a location near 34.8S latitude that was based on a path of constant true heading (CTH). We should know soon whether or not these warm spots are completely eliminated.

Another warm spot that should be searched during the current swing is based on a great circle path between waypoints BEDAX and the South Pole. I first proposed this path in August 2014, and I still consider it to be among the best possibilities because of the excellent fit of the BTO and BFO data, and because of the simplicity of navigating in the direction of true south. That said, despite the attractiveness of this scenario, we don’t know whether the aircraft was navigated in this manner, so it remains one of many other possibilities.

As shown in the figure above, there are warm spots that reach as far north as 27S latitude that are based on certain navigational inputs. Although the match to the BFO data is not as good for paths ending that far north, the BFO error is still well within what was recorded for previous flights of the 9M-MRO airframe. The drift models also favor an impact point further south than 27S. However, for debris discovered on the beaches of Eastern Africa, there could have been a considerable delay between the time of discovery and the time of arrival near the shore, and this uncertainty reduces the accuracy of the drift models.

In a nutshell, although the previous search swing has eliminated some possibilities, we are still very early in the search process, and it is much too early to draw any conclusions.

Unknown Activities of Seabed Constructor

The figure below from Richard Cole shows the recent behavior of Seabed Constructor. At the end of the last swing, Constructor returned to the outer leg of the primary search area, which had been previously scanned. After following the pattern of a 5-km circle, it retraced what we believe was part of a previous path of an AUV, and then disabled its AIS data, which made it impossible to remotely track. When the AIS was eventually re-enabled three days later, Constructor had left the search area, and was traveling back to Fremantle. What activities occurred during these three days is not known.

Seabed Constructor’s path, as adapted from the work of Richard Cole. (Click on image to enlarge.)

At the start of the search for the current swing, Constructor again returned to the southern end of the outer leg of the primary search area, and seems to be actively searching the seabed in this location. The activities in the current area are likely related to activities that occurred when the AIS was disabled during the last swing.

Some possibilities that have been proposed by others to explain the behavior are:

  • Constructor is re-scanning areas that had poor quality or missing data either because of malfunctioning equipment or challenging terrain
  • There are one or more promising points of interest that are under being comprehensively investigated
  • A search is underway to locate equipment that was lost in the previous swing
  • Some combination of the previous possibilities

Whatever the reason for the unexplained behavior, it is noteworthy that there was no reference to the behavior in either of the last two weekly updates from Malaysia. As Malaysia has two observers on Seabed Constructor, Malaysia is certainly aware of the surrounding circumstances. Malaysia’s decision to omit pertinent information in the weekly reports further erodes the public’s confidence in the Malaysian-led investigation. Credibility is not possible without transparency.

Posted in Aviation | 780 Comments »

The Search for MH370 Begins Again!

What many of us have been encouraging has finally transpired–the seabed search for the wreckage of MH370 has been re-started. The search vessel Seabed Constructor has just arrived in the new search area, outfitted with a team of eight autonomous underwater vehicles (AUVs). Ocean Infinity, the company under contract with Malaysia to conduct the search, has agreed to start by searching the 25,000 square kilometers identified by the ATSB and CSIRO as most likely. Included in that area are three locations that CSIRO has identified as high priority, as determined from satellite images of floating objects and complex drift models. Last August, the highest priority location was described by CSIRO’s David Griffin in these words: We think it is possible to identify a most likely location of the aircraft, with unprecedented precision and certainty. This location is 35.6[degrees south], 92.8 [degrees east]. 

At Ocean Infinity’s touted scan rate of 1,200 square kilometers per day, the entire 25,000 square kilometers would be completed in 21 days of searching, and the highest priority area of 5,000 square kilometers would be completed in less than a week.

The nominal location of the 7th arc that is shown in the figure above is a based on the assumption that the last transmission from the aircraft occurred at 20,000 ft, and our best estimate of the final BTO value is 18390 μs. The final two BTO values that were used for the best estimate occurred when the SATCOM of MH370 initiated a log-on to Inmarsat’s satellite network at 00:19 UTC on March 8, 2014, minutes after the engines stopped due to fuel exhaustion. (The re-boot of the SATCOM likely occurred after the APU automatically started and briefly supplied electrical power.)

I performed a statistical analysis of previous log-on events that occurred on March 7, 2014, including those that occurred on flight MH371 from Beijing to Kuala Lumpur. Using the results of this analysis, the final two BTO values from MH370 were first corrected and then appropriately weighted based on their respective uncertainties in order to arrive at the best estimate of 18390 μs.  The procedure was briefly described in a previous comment of mine.

Also shown in the figure are two other arcs that are positioned at +/- 25 NM from the nominal location of the 7th arc. These might serve as limits for some parts of the search. The figure shows that the +/-25 NM limits do not correspond to the boundaries of the 25,000 square kilometer area that was previously identified. In fact, the highest priority location identified by CSIRO (labeled CSIRO Priority 1) falls slightly outside of the 25-NM outer limit.

If not found in the initial 25,000 square kilometer area, the contract with Ocean Infinity indicates that the search will continue further northeast along the 7th arc. Likely, the search will continue along the 7th arc as far northeast as time and weather permit.

I often get asked whether I believe this search will succeed in finding the wreckage of MH370. I long ago arrived at the conclusion that based on the evidence we have, it is impossible to determine any one location with a high level of certainty, and I stopped trying. The satellite data and the drift models allow a broad range of possible impact sites. Within that range, there are at best some “warm spots” that are based on assumptions about navigation inputs. So, it becomes a numbers game–the more area searched, the higher probability of finding the wreckage. I subjectively believe there is a 33% chance of finding the wreckage in the first 25,000 square kilometers. If there is time and money to search at +/- 25 NM from the 7th arc all the way to a latitude of 26S, I subjectively put the chances of success at around 67%. That might seem like bad odds, but realistically, that’s higher than they’ve ever been.

The highest priority location identified by CSIRO is about 66 NM from Seabed Constructor’s present location, and might be reached within the next day. We’ll all be watching.

[Don Thompson reminds me that the data from an AUV mission is available only after the AUV is recovered after the completion of a dive, which could last 2+ days, based on the endurance of the batteries. It might take another 18 hours to analyze the data. That means that although the AUVs could reach “CSIRO Priority 1” by tomorrow, we would not know until Wednesday or Thursday whether or not the debris field was found.]

Posted in Aviation | 1,025 Comments »

Ocean Infinity Will Soon Start New Search for MH370

A new article by Hal Hodson on the search for MH370 was today published in the The Economist, and gives more details surrounding Ocean Infinity and its exploration technology. The article discloses that:

  • Host vessel Seabed Constructor, owned by Swire and under lease by Ocean Infinity (OI), has been fitted with eight underwater autonomous vehicles (AUVs) for the search.
  • The search will be conducted under the basis of “no find, no fee”, which means that OI will bear the economic cost of not finding the wreckage.
  • Even though the contract with Malaysia has not yet been signed, Ocean Infinity will proceed with the search in order to take advantage of the favorable weather in the Southern Indian Ocean in January and February.
  • The expected scan rate that is achievable using eight AUVs is 1200 sq km per day.
  • Some additional testing of the scanning capability of the AUVs will be performed en route between the imminent departure from Durban, South Africa, and the arrival to the search area.
  • The scanning will begin in the area designated by the ATSB as most likely (the 25,000 sq km) around 35S. If unsuccessful, the search will proceed towards 30S latitude.
  • The advice to proceed north towards 30S latitude came from independent experts. (Readers here might be able to guess the names of the independent experts that have advised OI.)
  • Rather than communicating with the autonomous surface vehicles (ASVs), the AUVs will communicate with the host vessel to periodically recalibrate the onboard inertial guidance system.
  • If the flight data recorder (FDR) is found, it will be recovered and surrendered to the Australian authorities.
  • Recovery of wreckage would require a separate agreement with the Malaysian authorities.

For readers of this blog, there are few new facts presented. Probably the most significant new fact is OI’s decision to start the search without a signed agreement.  The article is helpful in that it will provide useful information to a larger, broader audience, and will increase the overall awareness of the new search. There will also be renewed questions as to why Malaysia has delayed signing the agreement with OI.

Update on Jan 3, 2018: Malaysian Transport Minister Liow was asked about recent developments regarding Ocean Infinity and the renewed search for MH370. He replied that the parties were in final negotiations, and there would be an announcement next week. The fact that he offered no stipulations for reaching an agreement, which has been the pattern in the past when Malaysia has wanted to stall the negotiation, is very encouraging.

Update on Jan 5, 2018. Channel News Asia is reporting that Malaysia has accepted Ocean Infinity’s offer to continue the search on a “no cure, no fee” basis. The information was sent to the families of passengers on in an email. (Malaysia in the past has informed the next-of-kin of new developments before releasing details to the public.)

Update on Jan 10, 2018. As widely reported, the agreement between Ocean Infinity has been finalized in a signing ceremony. The tiered payment terms are linked to where the debris field is found, and ranges from $20 million if found in the highest priority, 5,000 sq km area, to $70 million if found beyond the 25,000 sq km area. Here is the complete statement from Minister of Transport Liow:

Posted in Aviation | 833 Comments »